

TERMS OF REFERENCE

for Task on Water Management Optimization Problems

SWARM Student Names: Jovana Andrijevic

Topic: Transportation Problem – Application in Water Resources Management.

1. Initial data

The water management system (WMS) shown on Fig. 1 consists of 3 water sources – a pumping station (PS 1) abstracting water from a reservoir, a pumping station (PS 2) abstracting surface water and a pumping station (PS 3) abstracting groundwater. pumping station (PS 2) abstracting surface water and a pumping station (PS 3) abstracting groundwater. These water sources are named A_1 , A_2 u A_3 .

The water users are 3 Irrigation Fields (IFs), together with their Regulating Reservoirs (RRs), which are located at a command elevation above the IFs. Generally, the water users are named B_1 , $B_2 \bowtie B_3$.

The water from each water source A_i can be delivered to each water user – an Irrigation Field (IF). The water from sources A_i is supplied to RRs, thus to water users B_1 , $B_2 \bowtie B_3$.

Fig. 1. Simplified scheme of the Water Management System

The daily supply capacities of water sources A_i and the demands for the water users B_j are shown in Annex 1.

Annex 1.			
Water Source	Supply Capacity 10 ³ .m ³	Water User	Demand, 10 ³ .m ³
A ₁ (PS 1)	90	B ₁ (RR 1)	90
A ₂ (PS 2)	70	B ₂ (RR 2)	80
A ₃ (PS 3)	50	B ₃ (RR 3)	70

TERMS OF REFERENCE

for Task on Water Management Optimization Problems

Topic: Transportation Problem – Application in Water Resources Management.

1. Initial data

The water management system (WMS) shown on Fig. 1 consists of 3 water sources – a pumping station (PS 1) abstracting water from a reservoir, a pumping station (PS 2) abstracting surface water and a pumping station (PS 3) abstracting groundwater. pumping station (PS 2) abstracting surface water and a pumping station (PS 3) abstracting groundwater. These water sources are named A_1 , A_2 u A_3 .

The water users are 3 Irrigation Fields (IFs), together with their Regulating Reservoirs (RRs), which are located at a command elevation above the IFs. Generally, the water users are named B_1 , $B_2 \bowtie B_3$.

The water from each water source A_i can be delivered to each water user – an Irrigation Field (IF). The water from sources A_i is supplied to RRs, thus to water users B_1 , $B_2 \bowtie B_3$.

Fig. 1. Simplified scheme of the Water Management System

The daily supply capacities of water sources A_i and the demands for the water users B_j are shown in Annex 1.

Annex 1.			
Water Source	Supply Capacity 10 ³ .m ³	Water User	Demand, 10 ³ .m ³
A ₁ (PS 1)	90	B ₁ (RR 1)	75
A ₂ (PS 2)	60	B ₂ (RR 2)	80
A ₃ (PS 3)	30	B ₃ (RR 3)	55

TERMS OF REFERENCE

for Task on Water Management Optimization Problems

SWARM Student Names: Aleksandar Komatina.....

Topic: Transportation Problem – Application in Water Resources Management.

1. Initial data

The water management system (WMS) shown on Fig. 1 consists of 3 water sources – a pumping station (PS 1) abstracting water from a reservoir, a pumping station (PS 2) abstracting surface water and a pumping station (PS 3) abstracting groundwater. pumping station (PS 2) abstracting surface water and a pumping station (PS 3) abstracting groundwater. These water sources are named A_1 , A_2 u A_3 .

The water users are 3 Irrigation Fields (IFs), together with their Regulating Reservoirs (RRs), which are located at a command elevation above the IFs. Generally, the water users are named B_1 , $B_2 \bowtie B_3$.

The water from each water source A_i can be delivered to each water user – an Irrigation Field (IF). The water from sources A_i is supplied to RRs, thus to water users B_1 , $B_2 \bowtie B_3$.

Fig. 1. Simplified scheme of the Water Management System

The daily supply capacities of water sources A_i and the demands for the water users B_j are shown in Annex 1.

Annex 1.			
Water Source	Supply Capacity 10 ³ .m ³	Water User	Demand, 10 ³ .m ³
A ₁ (PS 1)	80	B ₁ (RR 1)	65
A ₂ (PS 2)	55	B ₂ (RR 2)	75
A ₃ (PS 3)	50	B ₃ (RR 3)	65

TERMS OF REFERENCE

for Task on Water Management Optimization Problems

SWARM Student Names: Dražana Miranović

Topic: Transportation Problem – Application in Water Resources Management.

1. Initial data

The water management system (WMS) shown on Fig. 1 consists of 3 water sources – a pumping station (PS 1) abstracting water from a reservoir, a pumping station (PS 2) abstracting surface water and a pumping station (PS 3) abstracting groundwater. pumping station (PS 2) abstracting surface water and a pumping station (PS 3) abstracting groundwater. These water sources are named A_1 , A_2 u A_3 .

The water users are 3 Irrigation Fields (IFs), together with their Regulating Reservoirs (RRs), which are located at a command elevation above the IFs. Generally, the water users are named B_1 , $B_2 \bowtie B_3$.

The water from each water source A_i can be delivered to each water user – an Irrigation Field (IF). The water from sources A_i is supplied to RRs, thus to water users B_1 , $B_2 \bowtie B_3$.

Fig. 1. Simplified scheme of the Water Management System

The daily supply capacities of water sources A_i and the demands for the water users B_j are shown in Annex 1.

Annex 1.			
Water Source	Supply Capacity 10 ³ .m ³	Water User	Demand, 10 ³ .m ³
A ₁ (PS 1)	80	B ₁ (RR 1)	40
A ₂ (PS 2)	60	B ₂ (RR 2)	60
A ₃ (PS 3)	25	B ₃ (RR 3)	75

TERMS OF REFERENCE

for Task on Water Management Optimization Problems

SWARM Student Names: Nikola Jaksic

Topic: Transportation Problem – Application in Water Resources Management.

1. Initial data

The water management system (WMS) shown on Fig. 1 consists of 3 water sources – a pumping station (PS 1) abstracting water from a reservoir, a pumping station (PS 2) abstracting surface water and a pumping station (PS 3) abstracting groundwater. pumping station (PS 2) abstracting surface water and a pumping station (PS 3) abstracting groundwater. These water sources are named A_1 , A_2 u A_3 .

The water users are 3 Irrigation Fields (IFs), together with their Regulating Reservoirs (RRs), which are located at a command elevation above the IFs. Generally, the water users are named B_1 , $B_2 \bowtie B_3$.

The water from each water source A_i can be delivered to each water user – an Irrigation Field (IF). The water from sources A_i is supplied to RRs, thus to water users B_1 , $B_2 \bowtie B_3$.

Fig. 1. Simplified scheme of the Water Management System

The daily supply capacities of water sources A_i and the demands for the water users B_i are shown in Annex 1.

Annex 1.			
Water Source	Supply Capacity 10 ³ .m ³	Water User	Demand, 10 ³ .m ³
A ₁ (PS 1)	60	B ₁ (RR 1)	70
A ₂ (PS 2)	40	B ₂ (RR 2)	25
A ₃ (PS 3)	10	B ₃ (RR 3)	35

TERMS OF REFERENCE

for Task on Water Management Optimization Problems

SWARM Student Names: Anton Kauter

Topic: Transportation Problem – Application in Water Resources Management.

1. Initial data

The water management system (WMS) shown on Fig. 1 consists of 3 water sources – a pumping station (PS 1) abstracting water from a reservoir, a pumping station (PS 2) abstracting surface water and a pumping station (PS 3) abstracting groundwater. pumping station (PS 2) abstracting surface water and a pumping station (PS 3) abstracting groundwater. These water sources are named A_1 , A_2 u A_3 .

The water users are 3 Irrigation Fields (IFs), together with their Regulating Reservoirs (RRs), which are located at a command elevation above the IFs. Generally, the water users are named B_1 , $B_2 \bowtie B_3$.

The water from each water source A_i can be delivered to each water user – an Irrigation Field (IF). The water from sources A_i is supplied to RRs, thus to water users B_1 , $B_2 \bowtie B_3$.

Fig. 1. Simplified scheme of the Water Management System

The daily supply capacities of water sources A_i and the demands for the water users B_j are shown in Annex 1.

Annex 1.			
Water Source	Supply Capacity 10 ³ .m ³	Water User	Demand, 10 ³ .m ³
A ₁ (PS 1)	90	B ₁ (RR 1)	55
A ₂ (PS 2)	90	B ₂ (RR 2)	55
A ₃ (PS 3)	20	B ₃ (RR 3)	100

The costs $Z_{i,j}$ for supplying water from water source A_i to water user B_j are variable, according to the supplied volumes $V_{i,j}$. Cost functions $Z_{i,j} - V_{i,j}$ are presented in Annex 2.

2. Task

The volumes $V_{i,j}$ supplied from water source A_i to water user B_j to be determined in order to have minimum transportation costs for water supply within the entire water management system.

If the total demand of water users is greater than the total capacity of the water sources the deficit should be allocated according to requirement for minimum transportation costs for water supply within the entire water management system.

3. Deliverables

- 3.1. An explanatory note containing necessary estimations and sketches to be prepared and sent as pdf file to pifilkov@yahoo.com (deadline 9 December 2021).
- 3.2. Short presentation (up to 6 slides) has to be prepared and presented on 10 December 2021.

Sofia City, 30 November 2021